Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.396
Filtrar
1.
Sci Rep ; 14(1): 5855, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467729

RESUMO

The antifungal efficacy and cytotoxicity of a novel nano-antifungal agent, the Fe3O4@SiO2/Schiff-base complex of Cu(II) magnetic nanoparticles (MNPs), have been assessed for targeting drug-resistant Candida species. Due to the rising issue of fungal infections, especially candidiasis, and resistance to traditional antifungals, there is an urgent need for new therapeutic strategies. Utilizing Schiff-base ligands known for their broad-spectrum antimicrobial activity, the Fe3O4@SiO2/Schiff-base/Cu(II) MNPs have been synthesized. The Fe3O4@SiO2/Schiff-base/Cu(II) MNPs was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Energy-dispersive X-ray (EDX), Vibrating Sample Magnetometer (VSM), and Thermogravimetric analysis (TGA), demonstrating successful synthesis. The antifungal potential was evaluated against six Candida species (C. dubliniensis, C. krusei, C. tropicalis, C. parapsilosis, C. glabrata, and C. albicans) using the broth microdilution method. The results indicated strong antifungal activity in the range of 8-64 µg/mL with the lowest MIC (8 µg/mL) observed against C. parapsilosis. The result showed the MIC of 32 µg/mL against C. albicans as the most common infection source. The antifungal mechanism is likely due to the disruption of the fungal cell wall and membrane, along with increased reactive oxygen species (ROS) generation leading to cell death. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay for cytotoxicity on mouse L929 fibroblastic cells suggested low toxicity and even enhanced cell proliferation at certain concentrations. This study demonstrates the promise of Fe3O4@SiO2/Schiff-base/Cu(II) MNPs as a potent antifungal agent with potential applications in the treatment of life-threatening fungal infections, healthcare-associated infections, and beyond.


Assuntos
Nanopartículas de Magnetita , Micoses , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/química , Dióxido de Silício/farmacologia , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas de Magnetita/química , Candida , Candida albicans , Candida parapsilosis , Testes de Sensibilidade Microbiana
2.
ACS Biomater Sci Eng ; 10(4): 2567-2580, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38529538

RESUMO

In the present study, an innovative and simple electrochemical magneto biosensor based on carboxyethylsilanetriol-modified iron oxide (Fe3O4) magnetic nanoparticles was designed for ultrasensitive and specific analysis of cotinine, an important marker of smoking. Anticotinine antibodies were covalently immobilized on carboxylic acid-modified magnetic nanoparticles, and the cotinine-specific magnetic nanoparticles created a specific surface on the working electrode surface. The use of magnetic nanoparticles as an immobilization platform for antibodies provided a large surface area for antibody attachment and increased sensitivity. In addition, the advantages of the new immobilization platform were reusing the working electrode numerous times, recording repeatable and reproducible signals, and reducing the necessary volume of biomolecules. The specific interaction between cotinine and cotinine-specific antibody-attached magnetic nanoparticles restricted the electron transfer of the redox probe and changed the impedimetric response of the electrode correlated to the concentration of cotinine. The magneto biosensor had a wide detection range (2-300 pg/mL), a low LOD (606 fg/mL), and an acceptable recovery (97.24-105.31%) in real samples. In addition, the current biosensor's measurement results were in good agreement with those found by the standard liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA) methods. These results showed that a simple impedimetric immunosensing platform was generated for the cotinine analysis.


Assuntos
Cotinina , Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Técnicas Eletroquímicas
3.
Environ Sci Pollut Res Int ; 31(12): 18900-18915, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353819

RESUMO

A new magnetic nanoparticle modified with sodium tungstate (Mnp-Si-W) was synthesized and employed for the sorption of molybdenum from aqueous solutions. The prepared nanoparticles (Mnp-Si-W) were characterized by different advanced techniques. Different parameters that influenced the adsorption percent of Mo(VI) were investigated using a batch process. Based on a systematic investigation of the adsorption isotherms and kinetics models, Mo(VI) adsorption follows the Langmuir model and pseudo-second-order kinetics. According to the Langmuir isotherm model, the Mnp-Si-W nanoparticles exhibited a maximum adsorption capacity of 182.03 mg g-1 for Mo(VI) at pH 2.0. The effect of competing ions showed that the prepared nanoparticles have a high selectivity for the sorption of molybdenum. Moreover, the effect of some interfering anions on Mo(VI) ion sorption is found in the following order: phosphate < sulfate < chromate. Finally, the nanoparticle (Mnp-Si-W) can be successfully reused five times.


Assuntos
Nanopartículas de Magnetita , Compostos de Tungstênio , Poluentes Químicos da Água , Adsorção , Molibdênio/química , Nanopartículas de Magnetita/química , Sulfatos , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Soluções
4.
Nanotechnology ; 35(21)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38387086

RESUMO

As the second leading cause of death worldwide, neoplastic diseases are one of the biggest challenges for public health care. Contemporary medicine seeks potential tools for fighting cancer within nanomedicine, as various nanomaterials can be used for both diagnostics and therapies. Among those of particular interest are superparamagnetic iron oxide nanoparticles (SPIONs), due to their unique magnetic properties,. However, while the number of new SPIONs, suitably modified and functionalized, designed for medical purposes, has been gradually increasing, it has not yet been translated into the number of approved clinical solutions. The presented review covers various issues related to SPIONs of potential theranostic applications. It refers to structural considerations (the nanoparticle core, most often used modifications and functionalizations) and the ways of characterizing newly designed nanoparticles. The discussion about the phenomenon of protein corona formation leads to the conclusion that the scarcity of proper tools to investigate the interactions between SPIONs and human serum proteins is the reason for difficulties in introducing them into clinical applications. The review emphasizes the importance of understanding the mechanism behind the protein corona formation, as it has a crucial impact on the effectiveness of designed SPIONs in the physiological environment.


Assuntos
Nanopartículas de Magnetita , Neoplasias , Coroa de Proteína , Humanos , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química , Medicina de Precisão , Neoplasias/diagnóstico , Neoplasias/terapia , Nanopartículas Magnéticas de Óxido de Ferro
5.
Environ Sci Pollut Res Int ; 31(15): 22790-22801, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38413521

RESUMO

Arsenic is a highly toxic metal that causes cancer even at a low concentration and its removal from water resources is challenging. Herein, carbon extracted from waste onion bulbs is activated to cater for porosity and functionalized with magnetite (Fe3O4) nanoparticles (named MCK6) to address the challenge of As(III) removal. Synthesized MCK6 was highly mesoporous having a surface area of 208 m2/g, where magnetite nanoparticles (≤ 10 nm) are homogeneously distributed within a porous network. The developed adsorbent inherited functional groups from the biosource and magnetic property from magnetite making it ideal for removal of As(III). Further, MCK6 showed a maximum monolayer adsorption capacity (qm) of 10.2 mg/g at 298 K and pH 7. The adsorption thermodynamics delineates a non-spontaneous and endothermic reaction, where the kinetics followed pseudo 2nd order (R2 value of 0.977), while monolayer formation is explained by the Langmuir model. Moreover, MCK6 efficiently works to remove As(III) in a competitive metal ions system including Pb+2, Cd+2, and Ca+2, making it a suitable adsorbent to tackle contaminated water.


Assuntos
Nanopartículas de Magnetita , Poluentes Químicos da Água , Purificação da Água , Água/química , Óxido Ferroso-Férrico , Porosidade , Carbono , Poluentes Químicos da Água/análise , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Nanopartículas de Magnetita/química
6.
Int J Nanomedicine ; 19: 1645-1666, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406599

RESUMO

Purpose: In this study, a detailed characterization of a rabbit model of atherosclerosis was performed to assess the optimal time frame for evaluating plaque vulnerability using superparamagnetic iron oxide nanoparticle (SPION)-enhanced magnetic resonance imaging (MRI). Methods: The progression of atherosclerosis induced by ballooning and a high-cholesterol diet was monitored using angiography, and the resulting plaques were characterized using immunohistochemistry and histology. Morphometric analyses were performed to evaluate plaque size and vulnerability features. The accumulation of SPIONs (novel dextran-coated SPIONDex and ferumoxytol) in atherosclerotic plaques was investigated by histology and MRI and correlated with plaque age and vulnerability. Toxicity of SPIONDex was evaluated in rats. Results: Weak positive correlations were detected between plaque age and intima thickness, and total macrophage load. A strong negative correlation was observed between the minimum fibrous cap thickness and plaque age as well as the mean macrophage load. The accumulation of SPION in the atherosclerotic plaques was detected by MRI 24 h after administration and was subsequently confirmed by Prussian blue staining of histological specimens. Positive correlations between Prussian blue signal in atherosclerotic plaques, plaque age, and macrophage load were detected. Very little iron was observed in the histological sections of the heart and kidney, whereas strong staining of SPIONDex and ferumoxytol was detected in the spleen and liver. In contrast to ferumoxytol, SPIONDex administration in rabbits was well tolerated without inducing hypersensitivity. The maximum tolerated dose in rat model was higher than 100 mg Fe/kg. Conclusion: Older atherosclerotic plaques with vulnerable features in rabbits are a useful tool for investigating iron oxide-based contrast agents for MRI. Based on the experimental data, SPIONDex particles constitute a promising candidate for further clinical translation as a safe formulation that offers the possibility of repeated administration free from the risks associated with other types of magnetic contrast agents.


Assuntos
Aterosclerose , Compostos Férricos , Ferrocianetos , Nanopartículas de Magnetita , Placa Aterosclerótica , Coelhos , Ratos , Animais , Meios de Contraste/química , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Óxido Ferroso-Férrico , Nanopartículas de Magnetita/química , Aterosclerose/induzido quimicamente , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Imageamento por Ressonância Magnética/métodos
7.
Int J Pharm ; 654: 123936, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38417727

RESUMO

Osteoporosis is a metabolic disorder that leads to deterioration of bones. The major challenges confronting osteoporosis therapy include early-stage detection and regular disease monitoring. The present studies employed D-aspartic acid octapeptide (-D-Asp-)8 as bone-targeting peptide for evaluating osteoporosis manifestation, and superparamagnetic iron oxide nanoparticles (SPIONs) as nanocarriers for MRI-aided diagnosis. Thermal decomposition technique was employed to synthesize SPIONs, followed by surface-functionalization with hydrophilic ligands. Failure mode effect analysis and factor screening studies were performed to identify concentrations of SPIONs and ligand as critical material attributes, and systematic optimization was subsequently conducted employing face-centered cubic design. The optimum formulation was delineated using desirability function, and design space demarcated with 178.70 nm as hydrodynamic particle size, -24.40 mV as zeta potential, and 99.89 % as hydrophilic iron content as critical quality attributes. XRD patterns ratified lattice structure and SQUID studies corroborated superparamagnetic properties of hydrophilic SPIONs. Bioconjugation of (-D-Asp-)8 with SPIONs (1:1) was confirmed using UV spectroscopy, FTIR and NMR studies. Cell line studies indicated successful targeting of SPIONs to MG-63 human osteoblasts, ratifying enormous bone-targeting and safety potential of peptide-tethered SPIONs as MRI probes. In vivo MRI imaging studies in rats showcased promising contrast ability and safety of peptide-conjugated SPIONs.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Osteoporose , Ratos , Humanos , Animais , Nanopartículas de Magnetita/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Nanopartículas Magnéticas de Óxido de Ferro , Osteoporose/diagnóstico por imagem , Osteoporose/tratamento farmacológico , Nanopartículas/química
8.
J Control Release ; 367: 515-521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237689

RESUMO

This study explored the effectiveness of nasal administration in delivering magnetic nanoparticles into the brain for magnetic particle imaging of target regions. Successful delivery of iron oxide nanoparticles, which serve as contrast agents, to specific sites within the brain is crucial for achieving magnetic particle imaging. Nasal administration has gained attention as a method to bypass the blood-brain barrier and directly deliver therapeutics to the brain. In this study, we investigated surface modification techniques for administering magnetic nanoparticles into the nasal cavity, and provided experimental validation through in vivo studies. By compositing magnetic nanoparticles with gold nanoparticles, we enabled additional surface modification via AuS bonds without compromising their magnetic properties. The migration of the designed PEGylated magnetic nanoparticles into the brain following nasal administration was confirmed by magnetization measurements. Furthermore, we demonstrated the accumulation of these nanoparticles at specific target sites using probe molecules immobilized on the PEG terminus. Thus, the efficacy of delivering magnetic nanoparticles to the brain via nasal administration was demonstrated in this study. The findings of this research are expected to contribute significantly to the realization of magnetic particle imaging of target regions within the brain.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Administração Intranasal , Nanopartículas de Magnetita/química , Ouro , Encéfalo/diagnóstico por imagem , Nanopartículas/química , Fenômenos Magnéticos , Tamanho da Partícula , Sistemas de Liberação de Medicamentos
9.
Bioorg Chem ; 143: 107068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181659

RESUMO

α-Amylase is a secretory enzyme commonly found in nature. The α-Amylase enzyme catalyzes the hydrolysis of α-D-(1,4)-glucosidic bonds in starch, glycogen, and polysaccharides. The chemical characterization of the composite carrier and the immobilized enzyme was performed, and the accuracy of the immobilization was confirmed by FTIR, SEM, and EDS analyses. The X-ray diffraction (XRD) analysis indicates that the magnetic nanoparticle retained its magnetic properties following the modification process. Based on the Thermogravimetric Analysis (TGA) outcomes, it was evident that the structural integrity of the FPT nanocomposite remained unchanged at 200°C. The optimal pH was determined to be 5.5, and no alteration was observed following the immobilization process. Purified α-amylases usually lose their activity rapidly above 50°C. In this study, Bacillus licheniformis α-Amylase enzyme was covalently immobilized on the newly synthesized magnetic composite carrier having more azole functional group. For novelty-designed immobilized enzymes, while there is no change in the pH and optimum operating temperature of the enzyme with immobilization, two essential advantages are provided to reduce enzyme costs: the storage stability and reusability are increased. Furthermore, our immobilization technique enhanced enzyme stability when comparing our immobilized enzyme with the reference enzyme in industrial applications. The activity of the immobilized enzyme was higher in presence of 1-3% H2O2.


Assuntos
Bacillus licheniformis , Compostos de Epóxi , Nanopartículas de Magnetita , Metacrilatos , Triazóis , Enzimas Imobilizadas/química , Bacillus licheniformis/metabolismo , Peróxido de Hidrogênio , Nanopartículas de Magnetita/química , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , alfa-Amilases/metabolismo , Temperatura
10.
J Phys Chem B ; 128(3): 781-794, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38215049

RESUMO

Magnetite nanoparticles (MNPs) are attractive nanomaterials for applications in magnetic resonance imaging, targeted drug delivery, and anticancer therapy due to their unique properties such as nontoxicity, wide chemical affinity, and intrinsic superparamagnetism. Their functionalization with polymers such as chitosan or poly(vinyl alcohol) (PVA) can not only improve their biocompatibility and biodegradability but it also plays an important role in their interactions with biological cells. In this work, the effect of the functionalization of MNPs with chitosan, PVA, and their blend on model cell membranes formed from 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) using a Langmuir technique was studied. The studies performed showed that the type of biocompatible polymer in the MNP shell plays a crucial role in the effectiveness of its adsorption process into the model cell membrane. Modification of MNPs with chitosan facilitates significantly more effective adsorption than coating them with PVA or with a chitosan and PVA blend. The presence of all the investigated MNPs in the DPPC monolayer at low concentrations does not affect its thermodynamic state, fluidity, or morphology, which is promising in terms of their biocompatibility. On the other hand, their high concentration (molar fraction above ≈0.05) exerts a disruptive effect on the model cell membrane and results in their aggregation, leading probably to the loss of their superparamagnetic properties essential for nanomedicine.


Assuntos
Quitosana , Nanopartículas de Magnetita , Polímeros/química , Quitosana/química , Nanopartículas de Magnetita/química , Sistemas de Liberação de Medicamentos , Membrana Celular
11.
Mol Pharm ; 21(2): 970-981, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38206824

RESUMO

Biodistribution tracks compounds or molecules of interest in vivo to understand a compound's anticipated efficacy and safety. Nanoparticles deliver nucleic acid and drug payloads and enhance tumor permeability due to multiple properties such as high surface area to volume ratio, surface functionalization, and modifications. Studying the in vivo biodistribution of nanoparticles documents the effectiveness and safety of nanoparticles and facilitates a more application-driven approach for nanoparticle development that allows for more successful translation into clinical use. In this study, we present a relatively simple method to determine the biodistribution of magnetic iron nanoparticles in mice. In vitro, cells take up branched amphiphilic peptide-coated magnetic nanobeads (BAPc-MNBs) like their counterparts, i.e., branched amphiphilic peptide capsules (BAPCs) with a hollow water-filled core. Both BAPc-MNBs and BAPCs have widespread applications as a nanodelivery system. We evaluated the BAPc-MNBs tissue distribution in wild-type mice injected intravenously (i.v.), intraperitoneally (i.p.), or orally gavaged to understand the biological interactions and to further the development of branched amphiphilic peptide-based nanoparticles. The magnetic nanoparticles allowed collection of the BAPc-MNBs from multiple organs by magnetic bead sorting, followed by a high-throughput screening for iron content. When injected i.v., nanoparticles were distributed widely to various organs before elimination from the system via the intestines in feces. The spleen accumulated the highest amount of BAPc-MNBs in mice administered NPs via i.v. and i.p. but not via oral gavage. Taken together, these data demonstrate that the magnetic sorting not only allowed quantification of the BAPc-MNBs but also identified the distribution of BAPc-MNBs after distinct administration methods.


Assuntos
Benzenossulfonatos , Nanopartículas de Magnetita , Nanopartículas , Camundongos , Animais , Distribuição Tecidual , Peptídeos/química , Nanopartículas/química , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas de Magnetita/química
12.
ACS Appl Bio Mater ; 7(2): 1135-1145, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38262058

RESUMO

Nanotechnology has advanced significantly; however, little is known about the potential implications on human health-related issues, particularly blood carrying enzymes. Ionic liquids are also well-recognized for maintaining the structure and activity of enzymes. In this regard, we delineate a facile synthetic approach of preparation of Fe3O4 nanoparticles (NPs) as well as choline hydroxide [CH][OH] ionic liquid (IL)-supported Fe3O4 NPs (Fe3O4-CHOH). This approach of combining magnetic nanoparticles (MNPs) with IL results in distinctive properties, which may offer enormous utility in the field of biomedical research due to the effortless separation of MNPs by an external magnetic field. Detailed characterization of MNPs including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) was carried out. The biomolecular interactions of Fe3O4 and Fe3O4-CHOH NPs with cytochrome c (Cyt c) were studied in detail using various spectroscopic and microscopic techniques. From spectroscopic studies, it can be concluded that the secondary structure of Cyt c is more stable in the presence of Fe3O4-CHOH NPs than Fe3O4 NPs. The binding constant of Cyt c in the presence of MNPs was also calculated using the Benesi-Hildebrand equation. Furthermore, dynamic light scattering (DLS), ζ-potential, and microscopic studies were performed to study the interaction of Cyt c with MNPs. These studies provided evidence favoring the formation of bionanoconjugates of Cyt c with MNPs. Moreover, the enzymatic activity of Cyt c increases in the presence of both MNPs. The peroxidase activity of Cyt c in MNPs explicitly elucidates that the enzyme is preserved for a long time in the presence of Fe3O4-CHOH NPs. Later on, TEM and field emission scanning electron microscopy (FESEM) were also performed to gather more information regarding the morphology of Cyt c in the presence of MNPs.


Assuntos
Citocromos c , Nanopartículas de Magnetita , Humanos , Nanopartículas de Magnetita/química , Espectroscopia de Infravermelho com Transformada de Fourier , Peroxidases
13.
J Pharm Biomed Anal ; 241: 115963, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237544

RESUMO

In this study, we developed a spectrophotometry method for the analysis of 5-hydroxymethylfurfuraldehyde (HMF) in pharmaceutical formulations using citrate@Fe3O4 adsorbent. As bare magnetite (Fe3O4) has certain limitations, such as aggregation and oxidation, surface modifications are commonly used to improve its properties. We successfully coated Fe3O4 with sodium citrate to create a magnetic adsorbent for isolating HMF from samples. We confirmed the successful surface coating of Fe3O4 with citrate using Fourier Transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Zeta potential, and scanning electron microscopy (SEM). The high adsorption capacity of citrate@Fe3O4 is due to the abundance of carboxyl and hydroxyl groups on the surface of the adsorbent, making it ideal for HMF extraction. The HMF concentration was then quantified using spectrophotometry. Citrate@Fe3O4 exhibited a high surface area and strong interaction with HMF. We analyzed the individual influential factors affecting the magnetic solid phase extraction (MSPE) setup. Validation parameters were also provided to confirm the reliability of the method. Under optimal parameters, the method exhibited excellent linearity in the range of 0.05-30.00 µg/ml with the lower limit of quantification (LLOQ) of 0.05 µg/ml. Relative standard deviations (RSD) values for precision were better than 10% and the method's trueness were better than 10%. Recoveries were found to be in the range of 85% to 106%, indicating excellent accuracy and reliability. We used this method to identify and measure HMF in six different dextrose pharmaceutical dosage forms as intravenous injectable solutions and three honey samples.


Assuntos
Furaldeído/análogos & derivados , Nanopartículas de Magnetita , Nanopartículas , Ácido Cítrico , Espectroscopia de Infravermelho com Transformada de Fourier , Reprodutibilidade dos Testes , Preparações Farmacêuticas , Extração em Fase Sólida/métodos , Nanopartículas de Magnetita/química , Adsorção , Limite de Detecção
14.
Int J Biol Macromol ; 260(Pt 2): 129617, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266861

RESUMO

Magnetic nanoparticles with increasing superparamagnetism and magnetic targeting have found widespread application in fields such as food and medicine. In this study, polycarboxylated magnetic nanoparticles (Fe3O4@SiO2@CS-COOH) were prepared by surface functionalizing iron tetraoxide (Fe3O4) nanoparticles with ethylenediaminetetraacetic acid (EDTA) as a modifier. The appropriate degree of functionalization modification was obtained by adjusting the EDTA concentration and the ratio of cross-linking agents. The prepared magnetic nanoparticles were analyzed with structural and property characterization. The results showed that the Fe3O4@SiO2@CS-COOH magnetic nanoparticles prepared with 4 % EDTA and cross-linking agents at a molar ratio of 3:4 were uniform in particle size, with an average size of roughly 7 nm, and possessed an abundant carboxylate content (310.8064 µmol/g) and a high magnetization intensity (35.05 emu/g). As a model protein, bovine serum albumin (BSA) was immobilized on the surface of magnetic particles. The largest amount of immobilized protein was 500.4376 mg BSA/g at pH 4.0 and no extra salt ions. According to molecular docking simulations, its immobilization was due to the interaction of amino and carboxyl groups at the Fe3O4@SiO2@CS-COOH/BSA interface. Fe3O4@SiO2@CS-COOH possesses a large number of carboxyl groups, strong protein immobilization, and magnetic responsiveness, which may have potential applications in biomedical and food fields.


Assuntos
Nanopartículas de Magnetita , Soroalbumina Bovina , Soroalbumina Bovina/química , Dióxido de Silício/química , Nanopartículas de Magnetita/química , Ácido Edético , Simulação de Acoplamento Molecular
15.
Nanomedicine (Lond) ; 19(4): 303-323, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38270934

RESUMO

Background: Superparamagnetic iron core iron oxide shell nanocubes have previously shown superior performance in magnetic resonance imaging T2 contrast enhancement compared with spherical nanoparticles. Methods: Iron core iron oxide shell nanocubes were synthesized, stabilized with dimercaptosuccinic acid (DMSA-NC) and physicochemically characterized. MRI contrast enhancement and biocompatibility were assessed in vitro. Results: DMSA-NC showed a transverse relaxivity of 122.59 mM-1·s-1 Fe. Treatment with DMSA-NC did not induce cytotoxicity or oxidative stress in U-251 cells, and electron microscopy demonstrated DMSA-NC localization within endosomes and lysosomes in cells following internalization. Global proteomics revealed dysregulation of iron storage, transport, transcription and mRNA processing proteins. Conclusion: DMSA-NC is a promising T2 MRI contrast agent which, in this preliminary investigation, demonstrates favorable biocompatibility with an astrocyte cell model.


MRI is a powerful tool used in the diagnosis of cancer, strokes and other injuries. An MRI scan can be improved with the use of iron oxide nanoparticles, which enhance the contrast of the image. In this study we have developed cube-shaped iron nanoparticles (nanocubes), which have been previously shown to be more effective at inducing contrast. We demonstrated that iron-based nanocubes do not damage or induce stress in cells and work effectively as an MRI contrast agent. We further analyzed how the nanocubes may affect cell functioning by investigating changes to protein levels in the cells. The results of this study are promising steps towards using iron-based nanocubes as a tool to improve the clarity of MRI scans for medical imaging and diagnosis. Future work must determine whether these nanocubes work effectively and safely in an animal model, which is a critical step in progressing to their use in clinical settings.


Assuntos
Glioblastoma , Nanopartículas de Magnetita , Humanos , Ferro , Nanopartículas de Magnetita/química , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Proteômica , Compostos Férricos/química , Linhagem Celular , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Succímero/química
16.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276611

RESUMO

The tanning industry generates effluents with high chromium content, which require treatment prior to discharge into the sewage system. This article explores the use of magnetic magnetite nanoparticles (MNPs) to remove Cr(VI) from aqueous solutions, such as tanning effluents. The MNPs were synthesized by coprecipitation reaction using the Olea europaea extract as a reducing agent. Subsequently, they were characterized by dynamic light scattering spectroscopy (DLS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). MNPs with irregular morphology and diameters ranging from 73.28 to 162.90 nm were obtained. Cr(VI) removal was performed using jar test methodology, and its efficiency was evaluated in the laboratory for different initial Cr(VI) (mg/L) concentration and nanoparticle (g/L) concentration. A kinetic study was developed and indicated that the equilibrium adsorption mechanism corresponds to a pseudo-second-order model. Furthermore, the isotherm analysis revealed that chromium adsorption best fits the Langmuir isotherm. Finally, Cr(VI) removal rates from 85% to 100% were achieved in tanning and retanning effluents.


Assuntos
Nanopartículas de Magnetita , Olea , Poluentes Químicos da Água , Purificação da Água , Nanopartículas de Magnetita/química , Cromo/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
17.
Recent Pat Nanotechnol ; 18(2): 130-139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37904556

RESUMO

The increasing incidence of breast cancer and the associated morbidity due to higher metastasis created the urge to develop a nanocarrier that can be used as a potent therapeutic carrier with targeting efficacy. The use of superparamagnetic nanoparticles in breast cancer research and treatment has gained considerable attention in recent years. Magnetic nanoparticles (MNPs) can be used to construct nanocarriers since they possess superior properties such as superparamagnetism, easy surface functionalization to attach ligands, and non-immunogenic. MNPs are superior carriers that are used to target cancer cells without harming the normal cells in the body, which leads to therapeutic efficacy in the body. Along with their established anticancer potential and enhanced drug concentration at endosomal pH, the superparamagnetic property of MNPs was further exploited for their applications in reticuloendothelial uptake, drug delivery, medical imaging, and theranostics applications in breast cancer. Moreover, the clinical translational of MNPs, along with future prospects and key challenges in vivo, have been duly presented in the final review. The scientists preferred the ongoing research in MNPs due to their high biocompatibility and ease of targeting at molecular and cellular levels. The review highlighted the in vitro and in vivo research and patent supported data for potential use of MNPs for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Nanopartículas de Magnetita , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química , Patentes como Assunto , Sistemas de Liberação de Medicamentos , Magnetismo
18.
Biomater Adv ; 156: 213707, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043335

RESUMO

Incomplete removal of early-stage gastrointestinal cancers by endoscopic treatments often leads to recurrence induced by residual cancer cells. To completely remove or kill cancer tissues and cells and prevent recurrence, chemotherapy, radiotherapy, and hyperthermia using biomaterials with drugs or nanomaterials are usually administered following endoscopic treatments. However, there are few biomaterials that can be applied using endoscopic devices to locally kill cancer tissues and cells. We previously reported that decyl group-modified Alaska pollock gelatin-based microparticles (denoted C10MPs) can adhere to gastrointestinal tissues under wet conditions through the formation of a colloidal gel driven by hydrophobic interactions. In this study, we combined C10MPs with superparamagnetic iron oxide nanoparticles (SPIONs) to develop a sprayable heat-generating nanomaterial (denoted SP/C10MP) for local hyperthermia of gastrointestinal cancers. The rheological property, tissue adhesion strength, burst strength, and underwater stability of SP/C10MP were improved through decyl group modification and SPION addition. Moreover, SP/C10MP that adhered to gastrointestinal tissues formed a colloidal gel, which locally generated heat in response to an alternating magnetic field. SP/C10MP successfully killed cancer tissues and cells in colon cancer-bearing mouse models in vitro and in vivo. Therefore, SP/C10MP has the potential to locally kill residual cancer tissues and cells after endoscopic treatments.


Assuntos
Neoplasias Gastrointestinais , Hipertermia Induzida , Nanopartículas de Magnetita , Adesivos Teciduais , Camundongos , Animais , Adesivos Teciduais/química , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química , Neoplasia Residual , Materiais Biocompatíveis , Neoplasias Gastrointestinais/terapia
19.
Int J Biol Macromol ; 254(Pt 1): 127663, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37884234

RESUMO

The sustainable processes are now in tremendous demand for nanomaterial synthesis as a result of their unique properties and characteristics. The magnetic nanoparticles comprised of Fe3O4 and its conjugate with abundant and renewable biopolymer, chitosan, were synthesized using Prosopis farcta biomass extract, and the resulting materials were used to adsorb Pb (II) from aqueous solution. Thermodynamic parameters revealed that the sorption of lead (II) on Fe3O4 as well as Fe3O4-Chitosan (Fe3O4-CS) has been an endothermic and self-regulating procedure wherein the sorption kinetics was defined by a pseudo-second-order pattern and the sorption isotherms corresponded to the Freundlich pattern. A multivariable quadratic technique for adsorption process optimization was implemented to optimize the lead (II) adsorption on Fe3O4 and Fe3O4-chitosan nanoparticles, the optimal conditions being pH 7.9, contact time of 31.2 min, initial lead concentration of 39.2 mg/L, adsorbent amount of 444.3 mg, at a 49.7 °C temperature. The maximum adsorption efficiencies under optimal conditions were found to be 69.02 and 89.54 % for Fe3O4 and Fe3O4-CS adsorbents, respectively. Notably, Fe3O4 and Fe3O4-CS can be easily recovered using an external magnet, indicating that they are a viable and cost-effective lead removal option.


Assuntos
Quitosana , Nanopartículas de Magnetita , Prosopis , Poluentes Químicos da Água , Purificação da Água , Chumbo/química , Quitosana/química , Nanopartículas de Magnetita/química , Biomassa , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
20.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 189-205, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37401968

RESUMO

This work is aimed at studying the drug delivery applications of iron oxide (Fe3O4) nanoparticles with strontium (Sr) doping with varying molar ratios prepared by the co-precipitation route. The impact of increased strontium content on the particle size and magnetic properties was investigated. The impending of these nanoparticles for drug loading, drug release, and their respective cytotoxicity was also inspected.First, iron oxide nanoparticles were doped with various amounts of strontium, from 0.25, 0.50, and 0.75, to 1 mol using co-precipitation method. These synthesized nanoparticles were characterized by XRD, SEM, EDX, VSM, and FTIR for evaluating crystal structure, phase purity, morphology, composition, magnetic properties, and functional groups, respectively. Drug loading and drug release properties were determined using UV-vis spectroscopy, whereas MTT assay evaluated cytotoxicity. Colloidal stability was assessed using zeta potential in PBS solution.The findings confirmed the successful doping of iron oxide with strontium via XRD and EDX. SEM results confirmed spherical morphology for all and needle-like structure for 1 mol strontium doped sample. For VSM results, a single domain structure was established. It was also observed that the drug encapsulation efficiency increases with increased strontium content. Cytotoxicity results by MTT assay revealed increased cytotoxicity with increasing nanoparticle concentration, and ibuprofen-loaded nanoparticles showed higher cytotoxicity than un-loaded nanoparticles at the same concentration. Zeta potential results showed colloidal stability of iron oxide nanoparticles increased by the addition of strontium.This study provided predominantly comparison of the cytotoxicity of ibuprofen-loaded and non-loaded nanoparticles on Hep-2 cancer cells at similar concentrations for the first time for both Fe3O4 particles and Sr-doped Fe3O4 nanoparticles and enclosed the impact of increasing Sr doping content on Fe3O4 nanoparticles.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Ibuprofeno , Nanopartículas de Magnetita/química , Sistemas de Liberação de Medicamentos , Compostos Férricos/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...